首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Cartesian Cubical Computational Type Theory: Constructive Reasoning with Paths and Equalities
  • 本地全文:下载
  • 作者:Carlo Angiuli ; Kuen-Bang {Hou ; Robert Harper
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:119
  • 页码:1-17
  • DOI:10.4230/LIPIcs.CSL.2018.6
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present a dependent type theory organized around a Cartesian notion of cubes (with faces, degeneracies, and diagonals), supporting both fibrant and non-fibrant types. The fibrant fragment validates Voevodsky's univalence axiom and includes a circle type, while the non-fibrant fragment includes exact (strict) equality types satisfying equality reflection. Our type theory is defined by a semantics in cubical partial equivalence relations, and is the first two-level type theory to satisfy the canonicity property: all closed terms of boolean type evaluate to either true or false.
  • 关键词:Homotopy Type Theory; Two-Level Type Theory; Computational Type Theory; Cubical Sets
国家哲学社会科学文献中心版权所有