首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Hypersequent Calculus with Clusters for Tense Logic over Ordinals
  • 本地全文:下载
  • 作者:David Baelde ; Anthony Lick ; Sylvain Schmitz
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:122
  • 页码:1-19
  • DOI:10.4230/LIPIcs.FSTTCS.2018.15
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Prior's tense logic forms the core of linear temporal logic, with both past- and future-looking modalities. We present a sound and complete proof system for tense logic over ordinals. Technically, this is a hypersequent system, enriched with an ordering, clusters, and annotations. The system is designed with proof search algorithms in mind, and yields an optimal coNP complexity for the validity problem. It entails a small model property for tense logic over ordinals: every satisfiable formula has a model of order type at most omega^2. It also allows to answer the validity problem for ordinals below or exactly equal to a given one.
  • 关键词:modal logic; proof system; hypersequent
国家哲学社会科学文献中心版权所有