首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Univariate Ideal Membership Parameterized by Rank, Degree, and Number of Generators
  • 本地全文:下载
  • 作者:V. Arvind ; Abhranil Chatterjee ; Rajit Datta
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:122
  • 页码:1-18
  • DOI:10.4230/LIPIcs.FSTTCS.2018.7
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Let F[X] be the polynomial ring over the variables X={x_1,x_2, ..., x_n}. An ideal I= generated by univariate polynomials {p_i(x_i)}_{i=1}^n is a univariate ideal. We study the ideal membership problem for the univariate ideals and show the following results. - Let f(X) in F[l_1, ..., l_r] be a (low rank) polynomial given by an arithmetic circuit where l_i : 1 <= i <= r are linear forms, and I= be a univariate ideal. Given alpha in F^n, the (unique) remainder f(X) mod I can be evaluated at alpha in deterministic time d^{O(r)} * poly(n), where d=max {deg(f),deg(p_1)...,deg(p_n)}. This yields a randomized n^{O(r)} algorithm for minimum vertex cover in graphs with rank-r adjacency matrices. It also yields an n^{O(r)} algorithm for evaluating the permanent of a n x n matrix of rank r, over any field F. Over Q, an algorithm of similar run time for low rank permanent is due to Barvinok [Barvinok, 1996] via a different technique. - Let f(X)in F[X] be given by an arithmetic circuit of degree k (k treated as fixed parameter) and I=. We show that in the special case when I=, we obtain a randomized O^*(4.08^k) algorithm that uses poly(n,k) space. - Given f(X)in F[X] by an arithmetic circuit and I=, membership testing is W[1]-hard, parameterized by k. The problem is MINI[1]-hard in the special case when I=.
  • 关键词:Combinatorial Nullstellensatz; Ideal Membership; Parametric Hardness; Low Rank Permanent
国家哲学社会科学文献中心版权所有