首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Colouring (P_r+P_s)-Free Graphs
  • 本地全文:下载
  • 作者:Tereza Klimosov{\'a ; Josef Mal{\'i}k ; Tom{\'a}s Masar{\'i}k
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:123
  • 页码:1-13
  • DOI:10.4230/LIPIcs.ISAAC.2018.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The k-Colouring problem is to decide if the vertices of a graph can be coloured with at most k colours for a fixed integer k such that no two adjacent vertices are coloured alike. If each vertex u must be assigned a colour from a prescribed list L(u) subseteq {1,...,k}, then we obtain the List k-Colouring problem. A graph G is H-free if G does not contain H as an induced subgraph. We continue an extensive study into the complexity of these two problems for H-free graphs. We prove that List 3-Colouring is polynomial-time solvable for (P_2+P_5)-free graphs and for (P_3+P_4)-free graphs. Combining our results with known results yields complete complexity classifications of 3-Colouring and List 3-Colouring on H-free graphs for all graphs H up to seven vertices. We also prove that 5-Colouring is NP-complete for (P_3+P_5)-free graphs.
  • 关键词:vertex colouring; H-free graph; linear forest
国家哲学社会科学文献中心版权所有