首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Empirical Evaluation of SVM for Facial Expression Recognition
  • 本地全文:下载
  • 作者:Saeeda Saeed ; Junaid Baber ; Maheen Bakhtyar
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2018
  • 卷号:9
  • 期号:11
  • DOI:10.14569/IJACSA.2018.091195
  • 出版社:Science and Information Society (SAI)
  • 摘要:Support Vector Machines (SVMs) have shown bet-ter generalization and classification capabilities in different appli-cations of computer vision; SVM classifies underlying data by a hyperplane that can separate the two classes by maintaining the maximum margin between the support vectors of the respective classes. An empirical analysis of SVMs on the facial expression recognition task is reported with high intra and low inter class variations by conducting an extensive set of experiments on a large-scale Fer 2013 dataset. Three different kernel functions of SVM are used; linear kernel, quadratic kernel and cubic kernel, whereas, Histogram of Oriented Gradient (HoG) is used as a feature descriptor. Cubic Kernel achieves highest accuracy on Fer 2013 dataset using HoG.
  • 关键词:Facial Expression Recognition; Support Vector Ma-chine (SVM); Histogram of Oriented Gradients (HoG)
国家哲学社会科学文献中心版权所有