首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Improving Recommendation Techniques by Deep Learning and Large Scale Graph Partitioning
  • 本地全文:下载
  • 作者:Gourav Bathla ; Rinkle Rani ; Himanshu Aggarwal
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2018
  • 卷号:9
  • 期号:10
  • DOI:10.14569/IJACSA.2018.091049
  • 出版社:Science and Information Society (SAI)
  • 摘要:Recommendation is very crucial technique for social networking sites and business organizations. It provides suggestions based on users’ personalized interest and provide users with movies, books and topics links that would be most suitable for them. It can improve user effectiveness and business revenue by approximately 30%, if analyzed in intelligent manner. Social recommendation systems for traditional datasets are already analyzed by researchers and practitioners in detail. Several researchers have improved recommendation accuracy and throughput by using various innovative approaches. Deep learning has been proven to provide significant improvements in image processing and object recognition. It is machine learning technique where hidden layers are used to improve outcome. In traditional recommendation techniques, sparsity and cold start are limitations which are due to less user-item interactions. This can be removed by using deep learning models which can improve user-item matrix entries by using feature learning. In this paper, various models are explained with their applications. Readers can identify best suitable model from these deep learning models for recommendation based on their needs and incorporate in their techniques. When these recommendation systems are deployed on large scale of data, accuracy degrades significantly. Social big graph is most suitable for large scale social data. Further improvements for recommendations are explained with the use of large scale graph partitioning. MAE (Mean Absolute Error) and RMSE (Root Mean Squared Error) are used as evaluation parameters which are used to prove better recommendation accuracy. Epinions, MovieLens and FilmTrust datasets are also shown as most commonly used datasets for recommendation purpose.
  • 关键词:Social big data; social recommendation; deep learning; graph partitioning; social trust
国家哲学社会科学文献中心版权所有