期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2019
卷号:10
期号:2
页码:256-262
DOI:10.14569/IJACSA.2019.0100234
出版社:Science and Information Society (SAI)
摘要:Sentiment Analysis (SA) of social media contents has become one of the growing areas of research in data mining. SA provides the ability of text mining the public opinions of a subjective manner in real time. This paper proposes a SA model of Arabic Jordanian dialect tweets. Tweets are annotated on three different classes; positive, negative, and neutral. Support Vector Machines (SVM) and Naïve Bayes (NB) are used as supervised machine learning classification tools. Preprocessing of such tweets for SA is done via; cleaning noisy tweets, normalization, tokenization, namely, Entity Recognition, removing stop words, and stemming. The results of the experiments conducted on this model showed encouraging outcomes when Arabic light stemmer/segment is applied on Arabic Jordanian dialect tweets. Also, the results showed that SVM has better performance than NB on such tweets’ classifications.
关键词:Sentiment analysis; Arabic Jordanian dialect; tweets; machine learning; text mining