首页    期刊浏览 2025年02月01日 星期六
登录注册

文章基本信息

  • 标题:Sentiment Analysis of Arabic Jordanian Dialect Tweets
  • 本地全文:下载
  • 作者:Jalal Omer Atoum ; Mais Nouman
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2019
  • 卷号:10
  • 期号:2
  • 页码:256-262
  • DOI:10.14569/IJACSA.2019.0100234
  • 出版社:Science and Information Society (SAI)
  • 摘要:Sentiment Analysis (SA) of social media contents has become one of the growing areas of research in data mining. SA provides the ability of text mining the public opinions of a subjective manner in real time. This paper proposes a SA model of Arabic Jordanian dialect tweets. Tweets are annotated on three different classes; positive, negative, and neutral. Support Vector Machines (SVM) and Naïve Bayes (NB) are used as supervised machine learning classification tools. Preprocessing of such tweets for SA is done via; cleaning noisy tweets, normalization, tokenization, namely, Entity Recognition, removing stop words, and stemming. The results of the experiments conducted on this model showed encouraging outcomes when Arabic light stemmer/segment is applied on Arabic Jordanian dialect tweets. Also, the results showed that SVM has better performance than NB on such tweets’ classifications.
  • 关键词:Sentiment analysis; Arabic Jordanian dialect; tweets; machine learning; text mining
国家哲学社会科学文献中心版权所有