首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Incorporating deep features in the analysis of tissue microarray images
  • 本地全文:下载
  • 作者:Yan, Donghui ; Yan, Donghui ; Randolph, Timothy
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2019
  • 卷号:12
  • 期号:2
  • 页码:283-293
  • DOI:10.4310/SII.2019.v12.n2.a9
  • 出版社:International Press
  • 摘要:Tissue microarray (TMA) images have been used increasingly often in cancer studies and the validation of biomarkers. TACOMA—a cutting-edge automatic scoring algorithm for TMA images—is comparable to pathologists in terms of accuracy and repeatability. Here we consider how this algorithm may be further improved. Inspired by the recent success of deep learning, we propose to incorporate representations learnable through computation. We explore representations of a group nature through unsupervised learning, e.g., hierarchical clustering and recursive space partition. Information carried by clustering or spatial partitioning may be more concrete than the labels when the data are heterogeneous, or could help when the labels are noisy. The use of such information could be viewed as regularization in model fitting. It is motivated by major challenges in TMA image scoring—heterogeneity and label noise, and the cluster assumption in semi-supervised learning. Using this information on TMA images of breast cancer, we have reduced the error rate of TACOMA by about 6%. Further simulations on synthetic data provide insights on when such representations would likely help. Although we focus on TMAs, learnable representations of this type are expected to be applicable in other settings..
  • 关键词:tissue microarray images; automatic scoring; hierarchical clustering; recursive space partitioning; deep representation learning
国家哲学社会科学文献中心版权所有