首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Graphical Model Market Maker for Combinatorial Prediction Markets
  • 本地全文:下载
  • 作者:Kathryn Blackmond Laskey ; Wei Sun ; Robin Hanson
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2018
  • 卷号:63
  • 页码:421-460
  • DOI:10.1613/jair.1.11249
  • 语种:English
  • 出版社:American Association of Artificial
  • 摘要:We describe algorithms for use by prediction markets in forming a crowd consensus joint probability distribution over thousands of related events. Equivalently, we describe market mechanisms to efficiently crowdsource both structure and parameters of a Bayesian network. Prediction markets are among the most accurate methods to combine forecasts; forecasters form a consensus probability distribution by trading contingent securities. A combinatorial prediction market forms a consensus joint distribution over many related events by allowing conditional trades or trades on Boolean combinations of events. Explicitly representing the joint distribution is infeasible, but standard inference algorithms for graphical probability models render it tractable for large numbers of base events. We show how to adapt these algorithms to compute expected assets conditional on a prospective trade, and to find the conditional state where a trader has minimum assets, allowing full asset reuse. We compare the performance of three algorithms: the straightforward algorithm from the DAGGRE (Decomposition-Based Aggregation) prediction market for geopolitical events, the simple block-merge model from the SciCast market for science and technology forecasting, and a more sophisticated algorithm we developed for future markets.
  • 其他摘要:We describe algorithms for use by prediction markets in forming a crowd consensus joint probability distribution over thousands of related events. Equivalently, we describe market mechanisms to efficiently crowdsource both structure and parameters of a Bayesian network. Prediction markets are among the most accurate methods to combine forecasts; forecasters form a consensus probability distribution by trading contingent securities. A combinatorial prediction market forms a consensus joint distribution over many related events by allowing conditional trades or trades on Boolean combinations of events. Explicitly representing the joint distribution is infeasible, but standard inference algorithms for graphical probability models render it tractable for large numbers of base events. We show how to adapt these algorithms to compute expected assets conditional on a prospective trade, and to find the conditional state where a trader has minimum assets, allowing full asset reuse. We compare the performance of three algorithms: the straightforward algorithm from the DAGGRE (Decomposition-Based Aggregation) prediction market for geopolitical events, the simple block-merge model from the SciCast market for science and technology forecasting, and a more sophisticated algorithm we developed for future markets.
国家哲学社会科学文献中心版权所有