首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Listwise Collaborative Filtering with High-Rating-Based Similarity and Simple Missing Value Estimation
  • 本地全文:下载
  • 作者:Yoshiki TSUCHIYA ; Yoshiki TSUCHIYA ; Hajime NOBUHARA
  • 期刊名称:知能と情報
  • 印刷版ISSN:1347-7986
  • 电子版ISSN:1881-7203
  • 出版年度:2019
  • 卷号:31
  • 期号:1
  • 页码:501-507
  • DOI:10.3156/jsoft.31.1_501
  • 出版社:Japan Society for Fuzzy Theory and Intelligent Informatics
  • 摘要:

    In this paper, we make two proposals. The first aims to accelerate similarity calculations by only using a subset of the rating information (namely the highest ratings), while the second attempts to improve the accuracy of listwise collaborative filtering using a simple missing value estimation process. Experiments using the MovieLens 1M (6,040 users, 3,952 items and 1,000,209 ratings), 10M (71,567 users, 10,681 items and 10,000,054 ratings) and Jester (48,483 users, 100 items and 3,519,448 ratings) datasets demonstrate that these proposals can considerably reduce the computation time (by a factor of up to 50) and improve the normalized discounted cumulative gain value by up to 0.02 compared with ListCF, a well-known listwise collaborative filtering algorithm.

  • 关键词:recommender system;ranking-oriented collaborative filtering;high-rating-based similarity;missing value estimation
国家哲学社会科学文献中心版权所有