首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Using Morphological Data in Language Modeling for Serbian Large Vocabulary Speech Recognition
  • 本地全文:下载
  • 作者:Edvin Pakoci ; Edvin Pakoci ; Branislav Popović
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2019
  • 卷号:2019
  • DOI:10.1155/2019/5072918
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Serbian is in a group of highly inflective and morphologically rich languages that use a lot of different word suffixes to express different grammatical, syntactic, or semantic features. This kind of behaviour usually produces a lot of recognition errors, especially in large vocabulary systems—even when, due to good acoustical matching, the correct lemma is predicted by the automatic speech recognition system, often a wrong word ending occurs, which is nevertheless counted as an error. This effect is larger for contexts not present in the language model training corpus. In this manuscript, an approach which takes into account different morphological categories of words for language modeling is examined, and the benefits in terms of word error rates and perplexities are presented. These categories include word type, word case, grammatical number, and gender, and they were all assigned to words in the system vocabulary, where applicable. These additional word features helped to produce significant improvements in relation to the baseline system, both for n-gram-based and neural network-based language models. The proposed system can help overcome a lot of tedious errors in a large vocabulary system, for example, for dictation, both for Serbian and for other languages with similar characteristics.
国家哲学社会科学文献中心版权所有