首页    期刊浏览 2024年12月14日 星期六
登录注册

文章基本信息

  • 标题:Influence of Tool Tilt Angle on Material Flow and Defect Generation in Friction Stir Welding of AA2219
  • 作者:Suresh Meshram ; Madhusudhan Reddy
  • 期刊名称:Defence Science Journal
  • 印刷版ISSN:0976-464X
  • 出版年度:2018
  • 卷号:68
  • 期号:5
  • 页码:512-518
  • 语种:English
  • 出版社:Defence Scientific Information & Documentation Centre
  • 摘要:Heat treatable aluminium alloy AA2219 is widely used for aerospace applications, welded through gas tungsten and gas metal arc welding processes. Welds of AA2219 fabricated using a fusion welding process suffers from poor joint properties or welding defects due to melting and re-solidification. Friction stir welding (FSW) is a solid-state welding process and hence free from any solidification related defects. However, FSW also results in defects which are not related to solidification but due to improper process parameter selection. One of the important process parameters, i.e., tool tilt angle plays a critical role in material flow during FSW, controlling the size and location of the defects. Effect of tool tilt angle on material flow and defects in FSW is ambiguous. A study is therefore taken to understand the role of tool tilt angle on FSW defects. Variation in temperature, forces, and torque generated during FSW as a result of different tool tilt angles was found to be responsible for material flow in the weld, controlling the weld defects. An intermediate tool tilt angle (1o-2o) gives weld without microscopic defect in 7 mm thick AA2219 for a given set of other process parameters. At this tool tilt angle, x-force, and Z- force is balanced with viscosity and the material flow strain rate sufficient for the material to flow and fill internal voids or surface defects in the weld.
  • 其他摘要:Heat treatable aluminium alloy AA2219 is widely used for aerospace applications, welded through gas tungsten and gas metal arc welding processes. Welds of AA2219 fabricated using a fusion welding process suffers from poor joint properties or welding defects due to melting and re-solidification. Friction stir welding (FSW) is a solid-state welding process and hence free from any solidification related defects. However, FSW also results in defects which are not related to solidification but due to improper process parameter selection. One of the important process parameters, i.e., tool tilt angle plays a critical role in material flow during FSW, controlling the size and location of the defects. Effect of tool tilt angle on material flow and defects in FSW is ambiguous. A study is therefore taken to understand the role of tool tilt angle on FSW defects. Variation in temperature, forces, and torque generated during FSW as a result of different tool tilt angles was found to be responsible for material flow in the weld, controlling the weld defects. An intermediate tool tilt angle (1o-2o) gives weld without microscopic defect in 7 mm thick AA2219 for a given set of other process parameters. At this tool tilt angle, x-force, and Z- force is balanced with viscosity and the material flow strain rate sufficient for the material to flow and fill internal voids or surface defects in the weld.
  • 其他关键词:Tool tilt angle;Defect;Material flow;Forces.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有