首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:CNN予測器の形状と割当を交互に反復最適化する階層型可逆符号化方式
  • 作者:戸田 英治 ; 戸田 英治 ; 青森 久
  • 期刊名称:映像情報メディア学会誌
  • 印刷版ISSN:1342-6907
  • 电子版ISSN:1881-6908
  • 出版年度:2019
  • 卷号:73
  • 期号:1
  • 页码:190-198
  • DOI:10.3169/itej.73.190
  • 语种:Japanese
  • 出版社:The Institute of Image Information and Television Engineers
  • 摘要:

    さまざまな解像度を持つ端末から利用されることを想定した画像データベースシステムが盛んに構築されている.ここではスケーラブルな可逆符号化方式が利用されているが,JPEG 2000に代表されるスケーラブルな可逆符号化方式の符号化効率は,ノンスケーラブルな可逆符号化方式に劣るという問題がある.そこで我々は,セルラーニューラルネットワーク(CNN)を用いた階層型可逆符号化方式の研究を展開してきた.本論文では,従来手法におけるCNN予測器の割当を決定する予測器選択マップが符号量を最小化するように最適化されていない問題およびCNN出力関数の不連続点が予測に悪影響を与える問題に対処するために,CNN予測器の形状とその割当を反復最適化する階層型可逆符号化方式を提案する.グレースケール標準画像に対する符号化実験より,提案手法は既存のノンスケーラブルな可逆符号化方式と比較し有効であることを明らかにした.

  • 关键词:セルラーニューラルネットワーク;階層型可逆符号化;予測器形状と割当の反復最適化;コンテクスト適応多値算術符号化
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有