首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Visualizing and Testing the Multivariate Linear Regression Model
  • 作者:David Olive ; Lasanthi Pelawa Watagoda ; Hasthika Rupasinghe Arachchige Don
  • 期刊名称:International Journal of Statistics and Probability
  • 印刷版ISSN:1927-7032
  • 电子版ISSN:1927-7040
  • 出版年度:2015
  • 卷号:4
  • 期号:1
  • 页码:126
  • DOI:10.5539/ijsp.v4n1p126
  • 出版社:Canadian Center of Science and Education
  • 摘要:Recent results make the multivariate linear regression model much easier to use. This model has $m \geq 2$ response variables. Results by Kakizawa (2009) and Su and Cook (2012) can be used to explain the large sample theory of the least squares estimator and of the widely used Wilks' $\Lambda$, Pillai's trace, and Hotelling Lawley trace test statistics. Kakizawa (2009) shows that these statistics have the same limiting distribution. This paper reviews these results and gives two theorems to show that the Hotelling Lawley test generalizes the usual partial $F$ test for $m = 1$ response variable to $m \geq 1$ response variables. Plots for visualizing the model are also given, and can be used to check goodness and lack of fit, to check for outliers and influential cases, and to check whether the error distribution is multivariate normal or from some other elliptically contoured distribution.
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有