摘要:The neural mechanisms underlying body dissatisfaction and emotional problems evoked by social comparisons in patients with anorexia nervosa (AN) are currently unclear. Here, we elucidate patterns of brain activation among recovered patients with AN (recAN) during body comparison and weight estimation with functional magnetic resonance imaging (fMRI). We used fMRI to examine 12 patients with recAN and 13 healthy controls while they performed body comparison and weight estimation tasks with images of underweight, healthy weight, and overweight female bodies. In the body comparison task, participants rated their anxiety levels while comparing their own body with the presented image. In the weight estimation task, participants estimated the weight of the body in the presented image. We used between-group region of interest (ROI) analyses of the blood oxygen level dependent (BOLD) signal to analyze differences in brain activation patterns between the groups. In addition, to investigate activation outside predetermined ROIs, we performed an exploratory whole-brain analysis to identify group differences. We found that, compared to healthy controls, patients with recAN exhibited significantly greater activation in the pregenual anterior cingulate cortex (pgACC) when comparing their own bodies with images of underweight female bodies. In addition, we found that, compared with healthy controls, patients with recAN exhibited significantly smaller activation in the middle temporal gyrus corresponding to the extrastriate body area (EBA) when comparing their own bodies, irrespective of weight, during self-other comparisons of body shape. Our findings from a group of patients with recAN suggest that the pathology of AN may lie in an inability to regulate negative affect in response to body images via pgACC activation during body comparisons. The findings also suggest that altered body image processing in the brain persists even after recovery from AN.
关键词:Body dissatisfaction ; Body image ; Anorexia nervosa ; Anterior cingulate cortex ; Extrastriate body area ; fMRI