期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:50
页码:12763-12768
DOI:10.1073/pnas.1804590115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:The mechanisms that integrate environmental signals into developmental programs remain largely uncharacterized. Nuclear receptors (NRs) are ligand-regulated transcription factors that orchestrate the expression of complex phenotypes. The vitamin D receptor (VDR) is an NR activated by 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a hormone derived from 7-dehydrocholesterol (7-DHC). VDR signaling is best known for regulating calcium homeostasis in mammals, but recent evidence suggests a diversity of uncharacterized roles. In response to incubation temperature, embryos of the annual killifish Austrofundulus limnaeus can develop along two alternative trajectories: active development and diapause. These trajectories diverge early in development, from a biochemical, morphological, and physiological perspective. We manipulated incubation temperature to induce the two trajectories and profiled changes in gene expression using RNA sequencing and weighted gene coexpression network analysis. We report that transcripts involved in 1,25(OH)2D3 synthesis and signaling are expressed in a trajectory-specific manner. Furthermore, exposure of embryos to vitamin D3 analogs and Δ4-dafachronic acid directs continuous development under diapause-inducing conditions. Conversely, blocking synthesis of 1,25(OH)2D3 induces diapause in A. limnaeus and a diapause-like state in zebrafish, suggesting vitamin D signaling is critical for normal vertebrate development. These data support vitamin D signaling as a molecular pathway that can regulate developmental trajectory and metabolic dormancy in a vertebrate. Interestingly, the VDR is homologous to the daf-12 and ecdysone NRs that regulate dormancy in Caenorhabditis elegans and Drosophila . We suggest that 7-DHC−derived hormones and their associated NRs represent a conserved pathway for the integration of environmental information into developmental programs associated with life history transitions in animals.
关键词:nuclear receptors ; life history ; dormancy ; phenotypic plasticity