摘要:We consider nondeterministic higher-order recursion schemes as recognizers of languages of finite words or finite trees. We establish the complexity of the diagonal problem for schemes: given a set of letters A and a scheme G, is it the case that for every number n the scheme accepts a word (a tree) in which every letter from A appears at least n times. We prove that this problem is (m-1)-EXPTIME-complete for word-recognizing schemes of order m, and m-EXPTIME-complete for tree-recognizing schemes of order m.