首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Generalizing the Kawaguchi-Kyan Bound to Stochastic Parallel Machine Scheduling
  • 作者:Sven J{\"a}ger ; Martin Skutella
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:96
  • 页码:43:1-43:14
  • DOI:10.4230/LIPIcs.STACS.2018.43
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Minimizing the sum of weighted completion times on m identical parallel machines is one of the most important and classical scheduling problems. For the stochastic variant where processing times of jobs are random variables, Möhring, Schulz, and Uetz (1999) presented the first and still best known approximation result, achieving, for arbitrarily many machines, performance ratio 1+1/2(1+Delta), where Delta is an upper bound on the squared coefficient of variation of the processing times. We prove performance ratio 1+1/2(sqrt(2)-1)(1+Delta) for the same underlying algorithm---the Weighted Shortest Expected Processing Time (WSEPT) rule. For the special case of deterministic scheduling (i.e., Delta=0), our bound matches the tight performance ratio 1/2(1+sqrt(2)) of this algorithm (WSPT rule), derived by Kawaguchi and Kyan in a 1986 landmark paper. We present several further improvements for WSEPT's performance ratio, one of them relying on a carefully refined analysis of WSPT yielding, for every fixed number of machines m, WSPT's exact performance ratio of order 1/2(1+sqrt(2))-O(1/m^2).
  • 关键词:Stochastic Scheduling; Parallel Machines; Approximation Algorithm; List Scheduling; Weighted Shortest (Expected) Processing Time Rule
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有