首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Knapsack Problems for Wreath Products
  • 作者:Moses Ganardi ; Daniel K{\"o}nig ; Markus Lohrey
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:96
  • 页码:32:1-32:13
  • DOI:10.4230/LIPIcs.STACS.2018.32
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In recent years, knapsack problems for (in general non-commutative) groups have attracted attention. In this paper, the knapsack problem for wreath products is studied. It turns out that decidability of knapsack is not preserved under wreath product. On the other hand, the class of knapsack-semilinear groups, where solutions sets of knapsack equations are effectively semilinear, is closed under wreath product. As a consequence, we obtain the decidability of knapsack for free solvable groups. Finally, it is shown that for every non-trivial abelian group G, knapsack (as well as the related subset sum problem) for the wreath product G \wr Z is NP-complete.
  • 关键词:knapsack; wreath products; decision problems in group theory
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有