首页    期刊浏览 2025年02月28日 星期五
登录注册

文章基本信息

  • 标题:Lower Bounds for Combinatorial Algorithms for Boolean Matrix Multiplication
  • 作者:Debarati Das ; Michal Kouck{\'y ; Michael Saks
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:96
  • 页码:23:1-23:14
  • DOI:10.4230/LIPIcs.STACS.2018.23
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In this paper we propose models of combinatorial algorithms for the Boolean Matrix Multiplication (BMM), and prove lower bounds on computing BMM in these models. First, we give a relatively relaxed combinatorial model which is an extension of the model by Angluin (1976), and we prove that the time required by any algorithm for the BMM is at least Omega(n^3 / 2^{O( sqrt{ log n })}). Subsequently, we propose a more general model capable of simulating the "Four Russian Algorithm". We prove a lower bound of Omega(n^{7/3} / 2^{O(sqrt{ log n })}) for the BMM under this model. We use a special class of graphs, called (r,t)-graphs, originally discovered by Rusza and Szemeredi (1978), along with randomization, to construct matrices that are hard instances for our combinatorial models.
  • 关键词:Lower bounds; Combinatorial algorithm; Boolean matrix multiplication
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有