首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Computing Hitting Set Kernels By AC^0-Circuits
  • 作者:Max Bannach ; Till Tantau
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:96
  • 页码:9:1-9:14
  • DOI:10.4230/LIPIcs.STACS.2018.9
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a hypergraph H = (V,E), what is the smallest subset X of V such that e and X are not disjoint for all e in E? This problem, known as the hitting set problem, is a basic problem in parameterized complexity theory. There are well-known kernelization algorithms for it, which get a hypergraph H and a number k as input and output a hypergraph H' such that (1) H has a hitting set of size k if, and only if, H' has such a hitting set and (2) the size of H' depends only on k and on the maximum cardinality d of edges in H. The algorithms run in polynomial time, but are highly sequential. Recently, it has been shown that one of them can be parallelized to a certain degree: one can compute hitting set kernels in parallel time O(d) - but it was conjectured that this is the best parallel algorithm possible. We refute this conjecture and show how hitting set kernels can be computed in constant parallel time. For our proof, we introduce a new, generalized notion of hypergraph sunflowers and show how iterated applications of the color coding technique can sometimes be collapsed into a single application.
  • 关键词:parallel computation; fixed-parameter tractability; kernelization
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有