首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:From a (p,2)-Theorem to a Tight (p,q)-Theorem
  • 作者:Chaya Keller ; Shakhar Smorodinsky
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:51:1-51:14
  • DOI:10.4230/LIPIcs.SoCG.2018.51
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A family F of sets is said to satisfy the (p,q)-property if among any p sets of F some q have a non-empty intersection. The celebrated (p,q)-theorem of Alon and Kleitman asserts that any family of compact convex sets in R^d that satisfies the (p,q)-property for some q >= d+1, can be pierced by a fixed number (independent on the size of the family) f_d(p,q) of points. The minimum such piercing number is denoted by {HD}_d(p,q). Already in 1957, Hadwiger and Debrunner showed that whenever q > (d-1)/d p+1 the piercing number is {HD}_d(p,q)=p-q+1; no exact values of {HD}_d(p,q) were found ever since. While for an arbitrary family of compact convex sets in R^d, d >= 2, a (p,2)-property does not imply a bounded piercing number, such bounds were proved for numerous specific families. The best-studied among them is axis-parallel boxes in R^d, and specifically, axis-parallel rectangles in the plane. Wegner (1965) and (independently) Dol'nikov (1972) used a (p,2)-theorem for axis-parallel rectangles to show that {HD}_{rect}(p,q)=p-q+1 holds for all q>sqrt{2p}. These are the only values of q for which {HD}_{rect}(p,q) is known exactly. In this paper we present a general method which allows using a (p,2)-theorem as a bootstrapping to obtain a tight (p,q)-theorem, for families with Helly number 2, even without assuming that the sets in the family are convex or compact. To demonstrate the strength of this method, we show that {HD}_{d-box}(p,q)=p-q+1 holds for all q > c' log^{d-1} p, and in particular, {HD}_{rect}(p,q)=p-q+1 holds for all q >= 7 log_2 p (compared to q >= sqrt{2p}, obtained by Wegner and Dol'nikov more than 40 years ago). In addition, for several classes of families, we present improved (p,2)-theorems, some of which can be used as a bootstrapping to obtain tight (p,q)-theorems. In particular, we show that any family F of compact convex sets in R^d with Helly number 2 admits a (p,2)-theorem with piercing number O(p^{2d-1}), and thus, satisfies {HD}_{F}(p,q)=p-q+1 for all q>cp^{1-1/(2d-1)}, for a universal constant c.
  • 关键词:(p;q)-Theorem; convexity; transversals; (p;2)-theorem; axis-parallel rectangles
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有