首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Approximate Shortest Paths and Distance Oracles in Weighted Unit-Disk Graphs
  • 作者:Timothy M. Chan ; Dimitrios Skrepetos
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:99
  • 页码:24:1-24:13
  • DOI:10.4230/LIPIcs.SoCG.2018.24
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We present the first near-linear-time (1 + epsilon)-approximation algorithm for the diameter of a weighted unit-disk graph of n vertices, running in O(n log^2 n) time, for any constant epsilon>0, improving the near-O(n^{3/2})-time algorithm of Gao and Zhang [STOC 2003]. Using similar ideas, we can construct a (1+epsilon)-approximate distance oracle for weighted unit-disk graphs with O(1) query time, with a similar improvement in the preprocessing time, from near O(n^{3/2}) to O(n log^3 n). We also obtain new results for a number of other related problems in the weighted unit-disk graph metric, such as the radius and bichromatic closest pair. As a further application, we use our new distance oracle, along with additional ideas, to solve the (1 + epsilon)-approximate all-pairs bounded-leg shortest paths problem for a set of n planar points, with near O(n^{2.579}) preprocessing time, O(n^2 log n) space, and O(log{log n}) query time, improving thus the near-cubic preprocessing bound by Roditty and Segal [SODA 2007].
  • 关键词:shortest paths; distance oracles; unit-disk graphs; planar graphs
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有