首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:NP-hardness of Minimum Circuit Size Problem for OR-AND-MOD Circuits
  • 作者:Shuichi Hirahara ; Igor C. Oliveira ; Rahul Santhanam
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:102
  • 页码:5:1-5:31
  • DOI:10.4230/LIPIcs.CCC.2018.5
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Minimum Circuit Size Problem (MCSP) asks for the size of the smallest boolean circuit that computes a given truth table. It is a prominent problem in NP that is believed to be hard, but for which no proof of NP-hardness has been found. A significant number of works have demonstrated the central role of this problem and its variations in diverse areas such as cryptography, derandomization, proof complexity, learning theory, and circuit lower bounds. The NP-hardness of computing the minimum numbers of terms in a DNF formula consistent with a given truth table was proved by W. Masek [William J. Masek, 1979] in 1979. In this work, we make the first progress in showing NP-hardness for more expressive classes of circuits, and establish an analogous result for the MCSP problem for depth-3 circuits of the form OR-AND-MOD_2. Our techniques extend to an NP-hardness result for MOD_m gates at the bottom layer under inputs from (Z / m Z)^n.
  • 关键词:NP-hardness; Minimum Circuit Size Problem; depth-3 circuits
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有