摘要:We consider the problem of constructing a cyclic listing of all bitstrings of length 2n+1 with Hamming weights in the interval [n+1-l,n+l], where 1 <= l <= n+1, by flipping a single bit in each step. This is a far-ranging generalization of the well-known middle two levels problem (l=1). We provide a solution for the case l=2 and solve a relaxed version of the problem for general values of l, by constructing cycle factors for those instances. Our proof uses symmetric chain decompositions of the hypercube, a concept known from the theory of posets, and we present several new constructions of such decompositions. In particular, we construct four pairwise edge-disjoint symmetric chain decompositions of the n-dimensional hypercube for any n >= 12.
关键词:Gray code; Hamilton cycle; hypercube; poset; symmetric chain