首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:A Faster FPTAS for #Knapsack
  • 作者:Pawel Gawrychowski ; Liran Markin ; Oren Weimann
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2018
  • 卷号:107
  • 页码:64:1-64:13
  • DOI:10.4230/LIPIcs.ICALP.2018.64
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Given a set W = {w_1,..., w_n} of non-negative integer weights and an integer C, the #Knapsack problem asks to count the number of distinct subsets of W whose total weight is at most C. In the more general integer version of the problem, the subsets are multisets. That is, we are also given a set {u_1,..., u_n} and we are allowed to take up to u_i items of weight w_i. We present a deterministic FPTAS for #Knapsack running in O(n^{2.5}epsilon^{-1.5}log(n epsilon^{-1})log (n epsilon)) time. The previous best deterministic algorithm [FOCS 2011] runs in O(n^3 epsilon^{-1} log(n epsilon^{-1})) time (see also [ESA 2014] for a logarithmic factor improvement). The previous best randomized algorithm [STOC 2003] runs in O(n^{2.5} sqrt{log (n epsilon^{-1})} + epsilon^{-2} n^2) time. Therefore, for the case of constant epsilon, we close the gap between the O~(n^{2.5}) randomized algorithm and the O~(n^3) deterministic algorithm. For the integer version with U = max_i {u_i}, we present a deterministic FPTAS running in O(n^{2.5}epsilon^{-1.5}log(n epsilon^{-1} log U)log (n epsilon) log^2 U) time. The previous best deterministic algorithm [TCS 2016] runs in O(n^3 epsilon^{-1}log(n epsilon^{-1} log U) log^2 U) time.
  • 关键词:knapsack; approximate counting; K-approximating sets and functions
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有