首页    期刊浏览 2025年02月08日 星期六
登录注册

文章基本信息

  • 标题:Direct Inversion Formulas for the Natural SFT
  • 作者:Shigeyoshi Ogawa
  • 期刊名称:Sankhya. Series A, mathematical statistics and probability
  • 印刷版ISSN:0976-836X
  • 电子版ISSN:0976-8378
  • 出版年度:2018
  • 卷号:80
  • 期号:2
  • 页码:267-279
  • DOI:10.1007/s13171-018-0128-8
  • 语种:English
  • 出版社:Indian Statistical Institute
  • 摘要:The stochastic Fourier transform, or SFT for short, is an application that transforms a square integrable random function f ( t , ω ) to a random function defined by the following series; \({\mathcal T}_{\epsilon , \varphi }f(t,\o ):= {\sum }_{n} \epsilon _{n} \hat {f}_{n}(\o )\varphi _{n}(t)\) where { 𝜖 n } is an ℓ 2-sequence such that 𝜖 n ≠ 0, ∀ n and \(\hat {f}_{n}\) is the SFC (short for “stochastic Fourier coefficient”) defined by \(\hat {f}_{n}(\o )={{\int }_{0}^{1}} f(t,\o )\overline {\varphi _{n}(t)}dW_{t}\) , a stochastic integral with respect to Brownian motion W t . We have been concerned with the question of invertibility of the SFT and shown affirmative answers with concrete schemes for the inversion. In the present note we aim to study the case of a special SFT called “natural SFT” and show some of its basic properties. This is a follow-up of the preceding article ( Ogawa,S.,“A direct inversion formula for SFT”, Sankhya-A 77-1 (2015) ).
  • 关键词:Brownian motion ; Stochastic integrals ; Fourier series
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有