期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2018
卷号:9
期号:7
DOI:10.14569/IJACSA.2018.090710
出版社:Science and Information Society (SAI)
摘要:Sensors are being used in thousands of applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control. As these applications collect zettabytes of data everyday sensors play an integral role into big data. However, most of these data are redundant, and useless. Thus, efficient data aggregation and processing are significantly important in reducing redundant and useless data in sensor-based big data frameworks. Current studies on big data analytics do not focus on aggregating and filtering data at multiple layers of big data frameworks especially at the lower level at data collecting nodes (sensors) that reduce the processing overhead at the upper layer, i.e., big data server. Thus, this paper introduces a multi-tier data aggregation technique for sensor-based big data frameworks. While this work focuses more on data aggregation at sensor networks. To achieve energy efficiency it also demonstrates that efficient data processing at lower layers (sensor) significantly reduces overall energy consumption of the network and data transmission latency.
关键词:Data aggregation; big data; sensor networks; energy efficiency; clustering