期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2018
卷号:9
期号:4
DOI:10.14569/IJACSA.2018.090403
出版社:Science and Information Society (SAI)
摘要:In this study, a linear quadratic regulator (LQR) based position controller is designed and optimized for an inverted pendulum system. Two parameters, vertical pendulum angle and horizontal cart position, must be controlled together to move a pendulum to desired position. PID controllers are conventionally used for this purpose and two different PID controllers must be used to move the pendulum. LQR is an alternative method. Angle and position of inverted pendulum can be controlled using only one LQR. Determination of Q and R matrices is the main problem when designing an LQR and they must be minimized a defined performance index. Determination of the Q and R matrices is generally made by trial and error method but finding the optimum parameters using this method is difficult and not guaranty. An optimization algorithm can be used for this purpose and in this way; it is possible to obtain optimum controller parameters and high performance. That’s why an optimization method, grey wolf optimizer, is used to tune controller parameters in this study.
关键词:Grey wolf optimizer; inverted pendulum; position controller; linear quadratic regulator; optimized controller design