首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:ECG Abnormality Detection Algorithm
  • 作者:Soha Ahmed ; Ali Hilal-Alnaqbi ; Mohamed Al Hemairy
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2018
  • 卷号:9
  • 期号:8
  • DOI:10.14569/IJACSA.2018.090827
  • 出版社:Science and Information Society (SAI)
  • 摘要:The monitoring and early detection of abnormalities in the cardiac cycle morphology have significant impact on the prevention of heart diseases and their associated complications. Electrocardiogram (ECG) is very effective in detecting irregularities of the heart muscle functionality. In this work, we investigate the detection of possible abnormalities in ECG signal and the identification of the corresponding heart disease in real-time using an efficient algorithm. The algorithm relies on cross-correlation theory to detect abnormalities in ECG signal. The algorithm incorporates two cross-correlations steps. The first step detects abnormality in a real-time ECG signal trace while the second step identifies the corresponding disease. The optimization of search-time is the main advantage of this algorithm.
  • 关键词:Cross-correlation; abnormalities detection; electrocardiogram (ECG); cardiac cycle; eHealth; remote monitoring; algorithm
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有