期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:45
页码:E10556-E10565
DOI:10.1073/pnas.1808733115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Calmodulin (CaM) represents one of the most conserved proteins among eukaryotes and is known to bind and modulate more than a 100 targets. Recently, several disease-associated mutations have been identified in the CALM genes that are causative of severe cardiac arrhythmia syndromes. Although several mutations have been shown to affect the function of various cardiac ion channels, direct structural insights into any CaM disease mutation have been lacking. Here we report a crystallographic and NMR investigation of several disease mutant CaMs, linked to long-QT syndrome, in complex with the IQ domain of the cardiac voltage-gated calcium channel (CaV1.2). Surprisingly, two mutants (D95V, N97I) cause a major distortion of the C-terminal lobe, resulting in a pathological conformation not reported before. These structural changes result in altered interactions with the CaV1.2 IQ domain. Another mutation (N97S) reduces the affinity for Ca2+ by introducing strain in EF hand 3. A fourth mutant (F141L) shows structural changes in the Ca2+-free state that increase the affinity for the IQ domain. These results thus show that different mechanisms underlie the ability of CaM disease mutations to affect Ca2+-dependent inactivation of the voltage-gated calcium channel.