摘要:Naturally, textile waste and its complexity will grow significantly in tandem with the increasingly diverse production of the textile industry. In Indonesia, one of the leading textile industry is batik industry. These textile dye compounds as well as their corresponding phenolic compounds in batik waste are considered and treated as well as can cause acute toxicity and mutagenic effects for aquatic ecosystems. Ozone is an effective wastewater treatment technique by using ozone formation which can optimize the degradation process of batik wastewater. This study aims to test the ability of ozonation techniques in the process of removal remazol blue (RB-19) batik dyes or phenolic compounds (phenol and 4-chlorophenol) in bubble column reactor under basic condition (pH about 10). From experiment result, it was found that in 60-minutes degradation process with ozonation technique for RB-19 dye reached 99.70% and 4-chlorophenol reached 62.79%. The optimum condition of the treatment process was obtained by using air flow rate 10 L/min for RB-19 dye and 12 L/min for 4-chlorophenol, using a multi ozone injection system, and flow rate of wastewater 250 mL/min.
其他摘要:Naturally, textile waste and its complexity will grow significantly in tandem with the increasingly diverse production of the textile industry. In Indonesia, one of the leading textile industry is batik industry. These textile dye compounds as well as their corresponding phenolic compounds in batik waste are considered and treated as well as can cause acute toxicity and mutagenic effects for aquatic ecosystems. Ozone is an effective wastewater treatment technique by using ozone formation which can optimize the degradation process of batik wastewater. This study aims to test the ability of ozonation techniques in the process of removal remazol blue (RB-19) batik dyes or phenolic compounds (phenol and 4-chlorophenol) in bubble column reactor under basic condition (pH about 10). From experiment result, it was found that in 60-minutes degradation process with ozonation technique for RB-19 dye reached 99.70% and 4-chlorophenol reached 62.79%. The optimum condition of the treatment process was obtained by using air flow rate 10 L/min for RB-19 dye and 12 L/min for 4-chlorophenol, using a multi ozone injection system, and flow rate of wastewater 250 mL/min.