摘要:In view of the braking process for the megawatt wind turbine brakes, considering the geometric and motion characteristics of brake pads and brake discs, a displacement gradient circulation method is put forward in this article, to resolve the deviation of coupling results caused by the difference of friction effect along the radial/circumferential direction of brake disc, and the thermal–structural coupling analysis of friction pair during the braking process is carried out. A three-dimensional model of transient heat transfer for brake friction pair is built based on the Abaqus software. The heat flow density is loaded by the displacement gradient circulation method, which is used to calculate the frictional heat flow during the braking process. The analysis results show that along the circumferential direction of the brake disc the temperature distribution in the friction zone is non-uniform and the temperature starting from the contact position of the brake disc and the brake pad decreases along the counterclockwise direction. The thermal stress caused by the temperature field during the braking process is the main factor causing the brake disc/pad failure. The effectiveness of the method and the model is verified by the designed inertia braking experiments. The analytical method proposed in this article provides a reference for simulating the friction braking process of large-size disc brakes.