Droplet size spectrum and uniformity of spray volume distribution are important parameters for selecting spray nozzles. The objective of this study was to evaluate the average spray volume distribution and droplet size spectrum from ceramic nozzles. The spray volume distribution pattern was evaluated on a test table for hydraulic spray nozzles using spray heights of 0.4, 0.5, 0.6, 0.7, and 0.8 m, and working pressures of 500, 600, and 700 kPa. Computer simulations were used to analyze the spray volume distribution using arrangements of bar heights, working pressures, and spacing between spray nozzles in a bar of 12 m. The droplet size spectrum from the spray nozzles was evaluated using a randomized complete experimental design in a 2 × 3 split-plot arrangement consisting of two types of nozzles (ATR-1.0, and TVI-800075) and three working pressures (500, 600, and 700 kPa), with four replications. The uniformity of spray volume distribution was improved when using ATR-1.0 spray nozzles spaced 0.4 or 0.6 m apart, regardless of the working pressure. Regarding the droplet size spectrum, the volume median diameter decreased with increasing the working pressure for both types of nozzles, reaching 210 μm (ATR-1.0) and 483 μm (TVI-800075). Contrastingly, the percentage of droplets with diameter smaller than 100 μm increased with increasing working pressure; the target coverage presented the same trend, with 8.4% of coverage when using ATR nozzles with working pressure of 700 kPa.