首页    期刊浏览 2024年12月12日 星期四
登录注册

文章基本信息

  • 标题:Bayesian geostatistical modelling of PM10 and PM2.5 surface level concentrations in Europe using high-resolution satellite-derived products
  • 本地全文:下载
  • 作者:Anton Beloconi ; Nektarios Chrysoulakis ; Alexei Lyapustin
  • 期刊名称:Environment International
  • 印刷版ISSN:0160-4120
  • 电子版ISSN:1873-6750
  • 出版年度:2018
  • 卷号:121
  • 页码:57-70
  • DOI:10.1016/j.envint.2018.08.041
  • 出版社:Pergamon
  • 摘要:Air quality monitoring across Europe is mainly based on in situ ground stations, which are too sparse to accurately assess the exposure effects of air pollution for the entire continent. The demand for precise predictive models that estimate gridded geophysical parameters of ambient air at high spatial resolution has rapidly grown. Here, we investigate the potential of satellite-derived products to improve particulate matter ( PM ) estimates. Bayesian geostatistical models addressing confounding between the spatial distribution of pollutants and remotely sensed predictors were developed to estimate yearly averages of both, fine ( PM 2.5) and coarse ( PM 10) surface PM concentrations, at 1 km2 spatial resolution over 46 European countries. Model outcomes were compared to geostatistical, geographically weighted and land-use regression formulations. Rigorous model selection identified the Earth observation data which contribute most to pollutants' estimation. Geostatistical models outperformed the predictive ability of the frequently employed land-use regression. The resulting estimates of PM 10 and PM 2.5, which represent the main air quality indicators for the urban Sustainable Development Goal, indicate that in 2016, 66.2% of the European population was breathing air above the WHO air quality guidelines thresholds. Our estimates are readily available to policy makers and scientists assessing the effects of long-term exposure to pollution on human and ecosystem health.
  • 关键词:Particulate matter ; Bayesian geostatistics ; Integrated nested Laplace approximation ; Aerosol optical depth ; MAIAC ; Copernicus
国家哲学社会科学文献中心版权所有