其他摘要:Process-Based Fraud (PBF) is fraud enabled by process deviations that occur in business processes. Several studies have proposed PBF detection methods; however, false decisions are still often made because of cases with low deviation. Low deviation is caused by ambiguity in determining fraud attribute values and low frequency of occurrence. This paper proposes a method of detecting PBF with low deviation in order to correctly detect fraudulent cases. Firstly, the fraudulence attributes are established, then a fuzzy approach is utilized to weigh the importance of the fraud attributes. Further, multi-attribute decision making (MADM) is employed to obtain a PBF rating according to attribute values and attribute importance weights. Finally, a decision is made whether the deviation is fraudulent or not, based on the PBF rating. Experimental validation showed that the accuracy and false discovery rate of the method were 0.92 and 0.33, respectively.