首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants
  • 本地全文:下载
  • 作者:Kranthi Varala ; Amy Marshall-Colón ; Jacopo Cirrone
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:25
  • 页码:6494-6499
  • DOI:10.1073/pnas.1721487115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:This study exploits time, the relatively unexplored fourth dimension of gene regulatory networks (GRNs), to learn the temporal transcriptional logic underlying dynamic nitrogen (N) signaling in plants. Our “just-in-time” analysis of time-series transcriptome data uncovered a temporal cascade of cis elements underlying dynamic N signaling. To infer transcription factor (TF)-target edges in a GRN, we applied a time-based machine learning method to 2,174 dynamic N-responsive genes. We experimentally determined a network precision cutoff, using TF-regulated genome-wide targets of three TF hubs (CRF4, SNZ, and CDF1), used to “prune” the network to 155 TFs and 608 targets. This network precision was reconfirmed using genome-wide TF-target regulation data for four additional TFs (TGA1, HHO5/6, and PHL1) not used in network pruning. These higher-confidence edges in the GRN were further filtered by independent TF-target binding data, used to calculate a TF “N-specificity” index. This refined GRN identifies the temporal relationship of known/validated regulators of N signaling (NLP7/8, TGA1/4, NAC4, HRS1, and LBD37/38/39) and 146 additional regulators. Six TFs—CRF4, SNZ, CDF1, HHO5/6, and PHL1—validated herein regulate a significant number of genes in the dynamic N response, targeting 54% of N-uptake/assimilation pathway genes. Phenotypically, inducible overexpression of CRF4 in planta regulates genes resulting in altered biomass, root development, and 15NO3 uptake, specifically under low-N conditions. This dynamic N-signaling GRN now provides the temporal “transcriptional logic” for 155 candidate TFs to improve nitrogen use efficiency with potential agricultural applications. Broadly, these time-based approaches can uncover the temporal transcriptional logic for any biological response system in biology, agriculture, or medicine.
  • 关键词:systems biology ; plant biology ; nitrogen assimilation ; transcriptional dynamics ; network inference
国家哲学社会科学文献中心版权所有