首页    期刊浏览 2025年03月01日 星期六
登录注册

文章基本信息

  • 标题:A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase
  • 作者:Kristian K. Kristensen ; Søren Roi Midtgaard ; Simon Mysling
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:26
  • 页码:E6020-E6029
  • DOI:10.1073/pnas.1806774115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:The intravascular processing of triglyceride-rich lipoproteins depends on lipoprotein lipase (LPL) and GPIHBP1, a membrane protein of endothelial cells that binds LPL within the subendothelial spaces and shuttles it to the capillary lumen. In the absence of GPIHBP1, LPL remains mislocalized within the subendothelial spaces, causing severe hypertriglyceridemia (chylomicronemia). The N-terminal domain of GPIHBP1, an intrinsically disordered region (IDR) rich in acidic residues, is important for stabilizing LPL’s catalytic domain against spontaneous and ANGPTL4-catalyzed unfolding. Here, we define several important properties of GPIHBP1’s IDR. First, a conserved tyrosine in the middle of the IDR is posttranslationally modified by O-sulfation; this modification increases both the affinity of GPIHBP1–LPL interactions and the ability of GPIHBP1 to protect LPL against ANGPTL4-catalyzed unfolding. Second, the acidic IDR of GPIHBP1 increases the probability of a GPIHBP1–LPL encounter via electrostatic steering, increasing the association rate constant ( k on) for LPL binding by >250-fold. Third, we show that LPL accumulates near capillary endothelial cells even in the absence of GPIHBP1. In wild-type mice, we expect that the accumulation of LPL in close proximity to capillaries would increase interactions with GPIHBP1. Fourth, we found that GPIHBP1’s IDR is not a key factor in the pathogenicity of chylomicronemia in patients with the GPIHBP1 autoimmune syndrome. Finally, based on biophysical studies, we propose that the negatively charged IDR of GPIHBP1 traverses a vast space, facilitating capture of LPL by capillary endothelial cells and simultaneously contributing to GPIHBP1’s ability to preserve LPL structure and activity.
  • 关键词:hypertriglyceridemia ; electrostatic steering ; intrinsically disordered region ; intravascular lipolysis ; autoimmune disease
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有