期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:26
页码:E5990-E5999
DOI:10.1073/pnas.1801348115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Colorectal cancer patients often relapse after chemotherapy, owing to the survival of stem or progenitor cells referred to as cancer stem cells (CSCs). Although tumor stromal factors are known to contribute to chemoresistance, it remains not fully understood how CSCs in the hypoxic tumor microenvironment escape the chemotherapy. Here, we report that hypoxia-inducible factor (HIF-1α) and cancer-associated fibroblasts (CAFs)-secreted TGF-β2 converge to activate the expression of hedgehog transcription factor GLI2 in CSCs, resulting in increased stemness/dedifferentiation and intrinsic resistance to chemotherapy. Genetic or small-molecule inhibitor-based ablation of HIF-1α/TGF-β2−mediated GLI2 signaling effectively reversed the chemoresistance caused by the tumor microenvironment. Importantly, high expression levels of HIF-1α/TGF-β2/GLI2 correlated robustly with the patient relapse following chemotherapy, highlighting a potential biomarker and therapeutic target for chemoresistance in colorectal cancer. Our study thus uncovers a molecular mechanism by which hypoxic colorectal tumor microenvironment promotes cancer cell stemness and resistance to chemotherapy and suggests a potentially targeted treatment approach to mitigating chemoresistance.