首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Warming reverses top-down effects of predators on belowground ecosystem function in Arctic tundra
  • 作者:Amanda M. Koltz ; Aimée T. Classen ; Justin P. Wright
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2018
  • 卷号:115
  • 期号:32
  • 页码:E7541-E7549
  • DOI:10.1073/pnas.1808754115
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Predators can disproportionately impact the structure and function of ecosystems relative to their biomass. These effects may be exacerbated under warming in ecosystems like the Arctic, where the number and diversity of predators are low and small shifts in community interactions can alter carbon cycle feedbacks. Here, we show that warming alters the effects of wolf spiders, a dominant tundra predator, on belowground litter decomposition. Specifically, while high densities of wolf spiders result in faster litter decomposition under ambient temperatures, they result, instead, in slower decomposition under warming. Higher spider densities are also associated with elevated levels of available soil nitrogen, potentially benefiting plant production. Changes in decomposition rates under increased wolf spider densities are accompanied by trends toward fewer fungivorous Collembola under ambient temperatures and more Collembola under warming, suggesting that Collembola mediate the indirect effects of wolf spiders on decomposition. The unexpected reversal of wolf spider effects on Collembola and decomposition suggest that in some cases, warming does not simply alter the strength of top-down effects but, instead, induces a different trophic cascade altogether. Our results indicate that climate change-induced effects on predators can cascade through other trophic levels, alter critical ecosystem functions, and potentially lead to climate feedbacks with important global implications. Moreover, given the expected increase in wolf spider densities with climate change, our findings suggest that the observed cascading effects of this common predator on detrital processes could potentially buffer concurrent changes in decomposition rates.
  • 关键词:Arctic ; predator ; decomposition ; aboveground–belowground ; trophic interactions
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有