期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2018
卷号:115
期号:35
页码:E8125-E8134
DOI:10.1073/pnas.1722313115
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:A generic modeling framework to infer the failure-spreading process based on failure times of individual nodes is proposed and tested in four simulation studies: one for cascading failures in interdependent power and transportation networks, one for influenza epidemics, one benchmark test case for congestion cascade in a transportation network, and one benchmark test case for cascading power outages. Four general failure-spreading mechanisms—external, temporal, spatial, and functional—are quantified to capture what drives the spreading of failures. With the failure time of each node given, the proposed methodology demonstrates remarkable capability of inferring the underlying general failure-spreading mechanisms and accurately reconstructing the failure-spreading process in all four simulation studies. The analysis of the two benchmark test cases also reveals the robustness of the proposed methodology: It is shown that a failure-spreading process embedded by specific failure-spreading mechanisms such as flow redistribution can be captured with low uncertainty by our model. The proposed methodology thereby presents a promising channel for providing a generally applicable framework for modeling, understanding, and controlling failure spreading in a variety of systems.