首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Bioengineering of bacterial pathogens for noninvasive imaging and in vivo evaluation of therapeutics
  • 本地全文:下载
  • 作者:Sathish Rajamani ; Kyle Kuszpit ; Jennifer M. Scarff
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:12618
  • DOI:10.1038/s41598-018-30806-x
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Critical bacterial pathogens of public health and biodefense concerns were engineered to constitutively express Escherichia coli enzyme thymidine kinase (TK) that allows for noninvasive nuclear imaging via phosphorylation and entrapment of radiolabeled nucleoside analog 1-(2′deoxy-2′-fluoro-β-D-arabinofuranosyl)-5-iodouracil (FIAU). Expression of functional TK was established using a nucleoside analog Zidovudine that impeded the growth of tk -engineered bacteria. Significantly, no observable growth differences were detected for FIAU. High resolution mass spectrometry with Pseudomonas aeruginosa PAO1 and its tk variant (PAO1TK) confirmed FIAU phosphorylation and retention only in PAO1TK. In vitro gamma counting with wild-type PAO1, Acinetobacter baumannii and Burkholderia pseudomallei Bp82 and their tk derivatives with [18F]FIAU further confirmed that tk variants selectively incorporated the radiotracer, albeit with varying efficiencies. In vitro [18F]FIAU labeling coupled with in vivo Positron Emission Tomography/Computed Tomography (PET/CT) imaging of PAO1 and PAO1TK confirmed that only PAO1TK can be imaged in mice at sensitivities ≥107 bacteria per infection site. This was further verified by administering [18F]FIAU to animals infected with PAO1 and PAO1TK. Utility of tk -engineered P. aeruginosa in noninvasive PET/CT imaging for bacterial therapeutic evaluation in animals was demonstrated employing antibiotic ciprofloxacin, underscoring the immediate use of PAO1TK and potentially other engineered pathogens for evaluating experimental therapeutics.
国家哲学社会科学文献中心版权所有