首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Bacterial cell wall nanoimaging by autoblinking microscopy
  • 本地全文:下载
  • 作者:Kevin Floc’h ; Françoise Lacroix ; Liliana Barbieri
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2018
  • 卷号:8
  • 期号:1
  • 页码:14038
  • DOI:10.1038/s41598-018-32335-z
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Spurious blinking fluorescent spots are often seen in bacteria during single-molecule localization microscopy experiments. Although this ‘autoblinking’ phenomenon is widespread, its origin remains unclear. In Deinococcus strains, we observed particularly strong autoblinking at the periphery of the bacteria, facilitating its comprehensive characterization. A systematic evaluation of the contributions of different components of the sample environment to autoblinking levels and the in-depth analysis of the photophysical properties of autoblinking molecules indicate that the phenomenon results from transient binding of fluorophores originating mostly from the growth medium to the bacterial cell wall, which produces single-molecule fluorescence through a Point Accumulation for Imaging in Nanoscale Topography (PAINT) mechanism. Our data suggest that the autoblinking molecules preferentially bind to the plasma membrane of bacterial cells. Autoblinking microscopy was used to acquire nanoscale images of live, unlabeled D. radiodurans and could be combined with PALM imaging of PAmCherry-labeled bacteria in two-color experiments. Autoblinking-based super-resolved images provided insight into the formation of septa in dividing bacteria and revealed heterogeneities in the distribution and dynamics of autoblinking molecules within the cell wall.
国家哲学社会科学文献中心版权所有