首页    期刊浏览 2024年12月11日 星期三
登录注册

文章基本信息

  • 标题:Diagnosis of Stator Turn-to-Turn Fault and Stator Voltage Unbalance Fault Using ANFIS
  • 其他标题:Diagnosis of Stator Turn-to-Turn Fault and Stator Voltage Unbalance Fault Using ANFIS
  • 作者:Sk Moin Ahmed ; Haitham Abu-Rub ; Shady S. Refaat
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2013
  • 卷号:3
  • 期号:1
  • 页码:129-135
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:An induction machine is a highly non-linear system that poses a great challenge because of its fault diagnosis due to the processing of large and complex data. The fault in an induction machine can lead to excessive downtimes that can lead to huge losses in terms of maintenance and production. This paper discusses the diagnosis of stator winding faults, which is one of the common faults in an induction machine. Several diagnostics techniques have been presented in the literature. Fault detection using traditional analytical methods are not always possible as this requires prior knowledge of the exact motor model. The motor models are also susceptible to inaccuracy due to parameter variations. This paper presents Adaptive Neuro-fuzzy Inference system (ANFIS) based fault diagnosis of induction motors. The distinction between the stator winding fault and supply unbalance is addressed in this paper. Experimental data is collected by shorting the turns of a health motor as well as creating unbalance in the stator voltage. The data is processed and fed to an ANFIS classifier that accurately identifies the faulted condition and unbalanced supply voltage conditions. The ANFIS provides almost 99% accurate and computationally efficient output in diagnosing the faults and unbalance conditions.DOI:http://dx.doi.org/10.11591/ijece.v3i1.1854
  • 其他摘要:An induction machine is a highly non-linear system that poses a great challenge because of its fault diagnosis due to the processing of large and complex data. The fault in an induction machine can lead to excessive downtimes that can lead to huge losses in terms of maintenance and production. This paper discusses the diagnosis of stator winding faults, which is one of the common faults in an induction machine. Several diagnostics techniques have been presented in the literature. Fault detection using traditional analytical methods are not always possible as this requires prior knowledge of the exact motor model. The motor models are also susceptible to inaccuracy due to parameter variations. This paper presents Adaptive Neuro-fuzzy Inference system (ANFIS) based fault diagnosis of induction motors. The distinction between the stator winding fault and supply unbalance is addressed in this paper. Experimental data is collected by shorting the turns of a health motor as well as creating unbalance in the stator voltage. The data is processed and fed to an ANFIS classifier that accurately identifies the faulted condition and unbalanced supply voltage conditions. The ANFIS provides almost 99% accurate and computationally efficient output in diagnosing the faults and unbalance conditions. DOI: http://dx.doi.org/10.11591/ijece.v3i1.1854
Loading...
联系我们|关于我们|网站声明
国家哲学社会科学文献中心版权所有