期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2014
卷号:4
期号:3
页码:411-421
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:The compression of hyperspectral images (HSIs) has recently become a very attractive issue for remote sensing applications because of their volumetric data. An efficient method for hyperspectral image compression is presented. The proposed algorithm, based on Discrete Wavelet Transform and CANDECOM/PARAFAC (DWT-CP), exploits both the spectral and the spatial information in the images. The core idea behind our proposed technique is to apply CP on the DWT coefficients of spectral bands of HSIs. We use DWT to effectively separate HSIs into different sub-images and CP to efficiently compact the energy of sub-images. We evaluate the effect of the proposed method on real HSIs and also compare the results with the well-known compression methods. The obtained results show a better performance when comparing with the existing method PCA with JPEG 2000 and 3D SPECK.DOI:http://dx.doi.org/10.11591/ijece.v4i3.6326
其他摘要:The compression of hyperspectral images (HSIs) has recently become a very attractive issue for remote sensing applications because of their volumetric data. An efficient method for hyperspectral image compression is presented. The proposed algorithm, based on Discrete Wavelet Transform and CANDECOM/PARAFAC (DWT-CP), exploits both the spectral and the spatial information in the images. The core idea behind our proposed technique is to apply CP on the DWT coefficients of spectral bands of HSIs. We use DWT to effectively separate HSIs into different sub-images and CP to efficiently compact the energy of sub-images. We evaluate the effect of the proposed method on real HSIs and also compare the results with the well-known compression methods. The obtained results show a better performance when comparing with the existing method PCA with JPEG 2000 and 3D SPECK. DOI: http://dx.doi.org/10.11591/ijece.v4i3.6326