首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System
  • 其他标题:ANFIS Used as a Maximum Power Point Tracking Algorithm for a Photovoltaic System
  • 本地全文:下载
  • 作者:Dragan Mlakić ; Ljubomir Majdandžić ; Srete Nikolovski
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2018
  • 卷号:8
  • 期号:2
  • 页码:867-879
  • DOI:10.11591/ijece.v8i2.pp867-879
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:Photovoltaic (PV) modules play an important role in modern distribution networks; however, from the beginning, PV modules have mostly been used in order to produce clean, green energy and to make a profit. Working effectively during the day, PV systems tend to achieve a maximum power point accomplished by inverters with built-in Maximum Power Point Tracking (MPPT) algorithms. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS), as a method for predicting an MPP based on data on solar exposure and the surrounding temperature. The advantages of the proposed method are a fast response, non-invasive sampling, total harmonic distortion reduction, more efficient usage of PV modules and a simple training of the ANFIS algorithm. To demonstrate the effectiveness and accuracy of the ANFIS in relation to the MPPT algorithm, a practical sample case of 10 kW PV system and its measurements are used as a model for simulation. Modelling and simulations are performed using all available components provided by technical data. The results obtained from the simulations point to the more efficient usage of the ANFIS model proposed as an MPPT algorithm for PV modules in comparison to other existing methods.
  • 其他摘要:Photovoltaic (PV) modules play an important role in modern distribution networks; however, from the beginning, PV modules have mostly been used in order to produce clean, green energy and to make a profit. Working effectively during the day, PV systems tend to achieve a maximum power point accomplished by inverters with built-in Maximum Power Point Tracking (MPPT) algorithms. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS), as a method for predicting an MPP based on data on solar exposure and the surrounding temperature. The advantages of the proposed method are a fast response, non-invasive sampling, total harmonic distortion reduction, more efficient usage of PV modules and a simple training of the ANFIS algorithm. To demonstrate the effectiveness and accuracy of the ANFIS in relation to the MPPT algorithm, a practical sample case of 10 kW PV system and its measurements are used as a model for simulation. Modelling and simulations are performed using all available components provided by technical data. The results obtained from the simulations point to the more efficient usage of the ANFIS model proposed as an MPPT algorithm for PV modules in comparison to other existing methods.
国家哲学社会科学文献中心版权所有