首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Optimisation towards Latent Dirichlet Allocation: Its Topic Number and Collapsed Gibbs Sampling Inference Process
  • 本地全文:下载
  • 作者:Bambang Subeno ; Retno Kusumaningrum ; Farikhin Farikhin
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2018
  • 卷号:8
  • 期号:5
  • 页码:3204-3213
  • DOI:10.11591/ijece.v8i5.pp3204-3213
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:Latent Dirichlet Allocation (LDA) is a probability model for grouping hidden topics in documents by the number of predefined topics. If conducted incorrectly, determining the amount of K topics will result in limited word correlation with topics. Too large or too small number of K topics causes inaccuracies in grouping topics in the formation of training models. This study aims to determine the optimal number of corpus topics in the LDA method using the maximum likelihood and Minimum Description Length (MDL) approach. The experimental process uses Indonesian news articles with the number of documents at 25, 50, 90, and 600; in each document, the numbers of words are 3898, 7760, 13005, and 4365. The results show that the maximum likelihood and MDL approach result in the same number of optimal topics. The optimal number of topics is influenced by alpha and beta parameters. In addition , the number of documents does not affect the computation times but the number of words does. Computational times for each of those datasets are 2.9721, 6.49637, 13.2967, and 3.7152 seconds. The optimisation model has resulted in many LDA topics as a classification model. This experiment shows that the highest average accuracy is 61% with alpha 0.1 and beta 0.001 .
  • 其他摘要:Latent Dirichlet Allocation (LDA) is a probability model for grouping hidden topics in documents by the number of predefined topics. If conducted incorrectly, determining the amount of K topics will result in limited word correlation with topics. Too large or too small number of K topics causes inaccuracies in grouping topics in the formation of training models. This study aims to determine the optimal number of corpus topics in the LDA method using the maximum likelihood and Minimum Description Length (MDL) approach. The experimental process uses Indonesian news articles with the number of documents at 25, 50, 90, and 600; in each document, the numbers of words are 3898, 7760, 13005, and 4365. The results show that the maximum likelihood and MDL approach result in the same number of optimal topics. The optimal number of topics is influenced by alpha and beta parameters. In addition , the number of documents does not affect the computation times but the number of words does. Computational times for each of those datasets are 2.9721, 6.49637, 13.2967, and 3.7152 seconds. The optimisation model has resulted in many LDA topics as a classification model. This experiment shows that the highest average accuracy is 61% with alpha 0.1 and beta 0.001 .
  • 关键词:optimisation;number of topics;likelihood;minimum description length; latent Dirichlet allocation
国家哲学社会科学文献中心版权所有