摘要:In this paper, the evaluation and prediction model of prefabricated plant site was established by BP neural network, which taking nine factors into consideration, such as location, topography, land scale, transportation facilities, availability of raw materials and labour. These nine factors were taken as input factors, and the normalized global value was taken as output factor. The normalized global value was used to evaluate the performance of prefabricated plant site. In addition, the model was verified to be accurate by analysing twelve prefabricated plant site samples. Therefore, it is obvious that the model is stable in operation with high precision, and can provide effective support in the selection of prefabricated plant site.
其他摘要:In this paper, the evaluation and prediction model of prefabricated plant site was established by BP neural network, which taking nine factors into consideration, such as location, topography, land scale, transportation facilities, availability of raw materials and labour. These nine factors were taken as input factors, and the normalized global value was taken as output factor. The normalized global value was used to evaluate the performance of prefabricated plant site. In addition, the model was verified to be accurate by analysing twelve prefabricated plant site samples. Therefore, it is obvious that the model is stable in operation with high precision, and can provide effective support in the selection of prefabricated plant site.