摘要:In order to study the rapid start-up technology of the anaerobic ammonium oxidation process, a comparison test of no magnetic field and magnetic field was performed in two identical ASBR reactors R1 and R2 respectively. The results show that both reactors can successfully start Anammox. The R2 start-up period (75d) of the applied magnetic field is shortened by 15% compared with the unloaded magnetic field R1 start-up period (90d); the R2 ammonia-nitrogen removal rate is 97% higher than that of 95% of R1. The quantitative relationship analysis between NH4+-N, NO2--N and NO3--N shows that the change of R2 ratio is closer to the theoretical value, which can better improve the activity of microbial enzymes and accelerate the enrichment of ammonia oxidizing bacteria in the reactor. It is beneficial to nitrogen removal and R2 can quickly start the anaerobic ammonium oxidation process.
其他摘要:In order to study the rapid start-up technology of the anaerobic ammonium oxidation process, a comparison test of no magnetic field and magnetic field was performed in two identical ASBR reactors R1 and R2 respectively. The results show that both reactors can successfully start Anammox. The R2 start-up period (75d) of the applied magnetic field is shortened by 15% compared with the unloaded magnetic field R1 start-up period (90d); the R2 ammonia-nitrogen removal rate is 97% higher than that of 95% of R1. The quantitative relationship analysis between NH4+-N, NO2--N and NO3--N shows that the change of R2 ratio is closer to the theoretical value, which can better improve the activity of microbial enzymes and accelerate the enrichment of ammonia oxidizing bacteria in the reactor. It is beneficial to nitrogen removal and R2 can quickly start the anaerobic ammonium oxidation process.