首页    期刊浏览 2024年12月13日 星期五
登录注册

文章基本信息

  • 标题:Predicting the vortex shedding frequency at the interface of the lateral cavities
  • 本地全文:下载
  • 作者:Clément Perrot-Minot ; Emmanuel Mignot ; Nicolas Riviere
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2018
  • 卷号:40
  • 页码:1-8
  • DOI:10.1051/e3sconf/20184005011
  • 出版社:EDP Sciences
  • 摘要:The vortex shedding frequency in the mixing layer between a cavity and a main stream has been examined experimentally in absence of large oscillation of the free surface inside the cavity, called seiching. It was observed that the vortex shedding frequency follows a monotonically increasing trends with possible jumps from one to another with increasing Froude number of the main stream. These trends are obtained by solving a model based on the Rossiter approach. This model considers that the vortices shed in the mixing layer create some water depth variation at the impingement corner of the cavity. This water depth variation in turn generate pressure waves that propagates upstream and influence the vortex shedding process. Finally the measured vortex shedding frequencies correspond quite accurately to the frequencies predicted by the model. This highlights the existence of a resonant phenomena between vortices in the mixing layer of a lateral cavity and gravity waves even without any seiching phenomena.
  • 其他摘要:The vortex shedding frequency in the mixing layer between a cavity and a main stream has been examined experimentally in absence of large oscillation of the free surface inside the cavity, called seiching. It was observed that the vortex shedding frequency follows a monotonically increasing trends with possible jumps from one to another with increasing Froude number of the main stream. These trends are obtained by solving a model based on the Rossiter approach. This model considers that the vortices shed in the mixing layer create some water depth variation at the impingement corner of the cavity. This water depth variation in turn generate pressure waves that propagates upstream and influence the vortex shedding process. Finally the measured vortex shedding frequencies correspond quite accurately to the frequencies predicted by the model. This highlights the existence of a resonant phenomena between vortices in the mixing layer of a lateral cavity and gravity waves even without any seiching phenomena.
国家哲学社会科学文献中心版权所有